翻訳と辞書
Words near each other
・ Bottrill
・ Bottrill Head
・ Bottromycin
・ Bottrop
・ Bottrop Hauptbahnhof
・ Bottrop – Recklinghausen III
・ Bottrop-Boy station
・ Bottrop-Vonderort railway station
・ Botts
・ Botts Green
・ Botts' dots
・ Bottsand-class oil recovery ship
・ Bottuguda
・ Bottwar
・ Bottyán
Bott–Samelson resolution
・ Bott–Samelson variety
・ Botucaraitherium
・ Botucatu
・ Botucatu Formation
・ Botucatu Futebol Clube
・ Botula
・ Botula fusca
・ Botulf Botulfsson
・ Botulinum toxin
・ Botulinum toxin therapy of strabismus
・ Botulism
・ Botulu
・ Botum Sakor District
・ Botum Sakor National Park


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Bott–Samelson resolution : ウィキペディア英語版
Bott–Samelson resolution

In algebraic geometry, the Bott–Samelson resolution of a Schubert variety is a resolution of singularities. It was introduced by in the context of compact Lie groups. The algebraic formulation is due to and .
== Definition ==
Let ''G'' be a connected reductive complex algebraic group, ''B'' a Borel subgroup and ''T'' a maximal torus contained in ''B''.
Let w \in W = N_G(T)/T. Any such ''w'' can be written as a product of reflections by simple roots. Fix minimal such an expression:
:\underline = (s_, s_, \ldots, s_)
so that w = s_ s_ \cdots s_. (''l'' is the length of ''w''.) Let P_ \subset G be the subgroup generated by ''B'' and a representative of s_. Let Z_} = P_ \times \cdots \times P_/B^l
with respect to the action of B^l by
:(b_1, \ldots, b_l) \cdot (p_1, \ldots, p_l) = (p_1 b_1^, b_1 p_2 b_2^, \ldots, b_ p_l b_l^).
It is a smooth projective variety. Writing X_w = \overline / B = (P_ \cdots P_)/B for the Schubert variety for ''w'', the multiplication map
:\pi: Z__ = \mathcal_ and R^i \pi_
* \mathcal_ = 0, \, i \ge 1. In other words, X_w has rational singularities.
There are also some other constructions; see, for example, .
See also Bott–Samelson variety.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Bott–Samelson resolution」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.